
Spoedcursus Data
Science
BigData & NoSQL

A lot is expected from a data

scientist

Find the data

Store the data

Clean the data Explore the

data

Analyze in

depth

Visualize the

results

Tell the story

Understand the

question

Let’s get started.

BigData &

NoSQL

Store the

data

Table of contents

BigData

Types of databases

Hierarchical databases

Network databases

Relational databases

NoSQL

OO databases

Comparison

Case

Big Data and NoSQL

Big Data: not only volume

Volume
Big data systems have to deal
easily with it

Variety
Data has no fixed structure
(pictures, movies, e-mails, …)

Velocity
Data is delivered faster and
faster, and has to be
available faster (real-time)

Veracity
Some data is not useful or
bad quality

Gartner 3V model

0

5

10

15

20

25

30

35

40

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

C
re

at
io

n
 d

at
av

o
lu

m
e

 (
ZB

)

Source: IDC

2012: 1,3
zettabyte
2020: 35
zettabyte

How Big is Big in Big Data?

A dataset is considered Big Data when its size is beyond the
ability of a traditional system to capture, store, manipulate,
and analyse the data.

Increased data volume creation

0

5

10

15

20

25

30

35

40

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

C
re

at
io

n
 d

at
av

o
lu

m
e

 (
ZB

)

Source: IDC

2012: 1,3
zettabyte
2020: 35
zettabyte

Increased data volume created

0

5

10

15

20

25

30

35

40

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

C
re

at
io

n
 d

at
av

o
lu

m
e

 (
ZB

)

Source: IDC

2012: 1,3
zettabyte
2020: 35
zettabyte

scalability

Scaling

Vertical scaling
(scale-up)
-> use better

systems

Horizontal scaling
(scale-out)

-> use more
systems

Scaling

Scale out > Scale up
As data volume increases

How to
scale out?Data distribution

Sharding
(partitioning)

Put different data
on different nodes
-> write scalability

Replication
Copy the same data
over multiple nodes

-> read scalability

Master-slave
One write, all read

Peer-to-peer
All write, all read

Imagine this

is a server

Imagine these are parts of the

data

Read + write Read only

Legend for what follows

How to

scale out?

Single

Server

| All data on one server | No distribution at all

| One machine handles all reads and writes

| Graph databases (NoSQL) work best in this config

Advantages+

Disadvantages-

| Easy for operations people to manage

| Can only handle limited volume of data,

reads, write, etc.

| Easy for application developers to reason

about

| Single point of failure

| Eliminates all the complexities that the

other options introduce

How to
scale out?Sharding

| Different parts of the data on different servers

| Each node does its own reads & writes

Advantages+

Disadvantages-

| Rapid response from server

| Sharding alone likely to decrease resilience.
With a single server it’s easier to pay the
effort & cost to keep that server up & running,
clusters usually try to use cheaper, less
reliable machines and thus node failure is
more likely

| Improves write and read performance

| Many NoSQL dbs offer auto-sharding

How to
scale out?

Master-slave
replication

| Replicate same data across multiple nodes

| One nodes is made master (manual or auto)

| Replication process syncs slaves with master

Advantages+

Disadvantages-

| Improves read performance

| Doesn’t improve write performance

| Read resilience: if master fails, slaves can
still handle read requests

| Master remains single point of failure

| Resilience against slave failure

| Potential for inconsistencies

Master Slaves

How to
scale out?

Peer-to-peer
replication

| There is no master | All replicas have equal weights

| All nodes read & write all data

| Nodes communicate their writes

Advantages+

Disadvantages-

| Handle node failures without losing access
to data

| Potential for inconsistencies

| Increase read and write performance

| Write-write conflict

Peer Peer Peer

Types of databases

What is
a database?

5 types of
databases

Hierarchical databases

Network databases

Relational databases

NoSQL databases

Object Oriented databases

5 types of
databases

Hierarchical databases

A hierarchical database model is a data model in which the data is organized into a
tree-like structure and where records are connected to each other through links.

root Level 1

Level 2

Level 3

Level 4Leaf

5 types of
databases

RECORDTYPE Schilderij (ID:CHAR(3); Naam:CHAR(30); Artiest:CHAR(30);

Periode:INTEGER; Waarde:REAL; Eigenaar:CHAR(30))

ID Naam Artiest Periode Waarde Eigenaar

S01 Vissershuis Monet 1882 Boijmans16.000.000

S02 De balletles Degas 1872 Louvre8.500.000

S03 Mona Lisa Da Vinci 1499 Louvre75.000.000

S04 Namiddag te Oostende Ensor 1881 KMSK200.000

• Recordtype

• Record

• Relationship type: 1:N

Hierarchical databases
Building blocks

5 types of
databases

department

dnr dnaam dlocatie

werknemer

wnr wnaam adres geslacht geboorte
datum

project

pnr pnaam pduur

Hierarchical databases
Graphical Presentation

Database scheme “Schilderijen”

ID Naam Artiest Periode Waarde Eigenaar

Schilderij

Naam Voornaam Geboren Gestorven

Artiest

Naam Plaats Land

Eigenaar

r
1

r
2

r
3

5 types of
databases

Database “Schilderijen”

Da Vinci

r
1

S03

r
2

Boijmans

Louvre

r
3

KMSK

r
3

Degas

r
1

S02

r
2

S05

r
2

S04

r
2

S06

r
2

S07

r
2

Ensor

r
1

Monet

r
1

S01

r
2

r
3

Virtual relation
(child -> parent)

Hierarchical databases
Graphical Presentation

page

027

5 types of

databases

Advantages Disadvantages

Easy to understand Difficult to access values at lower level

Performance: fast & efficient

This model may not be flexible to accomodate

the dynamic needs of an organisation

Manages large amounts of data

Deletion of parent node result in deletion

of child node forcefully

Extra space is required for the storage of

pointers

Hierarchical databases
Pros and cons

Network databases

5 types of
databases

A network database is a type of database model wherein multiple member records
or files can be linked to multiple owner files and vice versa. The model can be viewed
as an upside-down tree where each member information is the branch linked to the
owner, which is the bottom of the tree.

5 types of
databases

• Recordtype

• Record

• Relationship type: 1:N

• Arrow pointing to the N-side

• Entry-points

departement

dnr dnaam dlocatie

werknemer

wnr wnaam adres geslacht geboorteda
tum

project

pnr pnaam pduur

Network databases
Building blocks

5 types of
databases

Databaseschema “Schilderijen” (multiple entrypoints)

ID Naam Artiest Periode Waarde Eigenaar

Schilderij

Naam Voornaam Geboren Gestorven

Artiest

Naam Plaats Land

Eigenaar

r
1

r
2

r
3

Network databases
Graphical Presentation

5 types of
databases

Database “Schilderijen”

Da Vinci

r
1

S03

r
2

Boijmans

r
3

Louvre

r
3

KMSK

r
3

Degas

r
1

S02

r
2

S05

r
2

S04

r
2

S06

r
2

S07

r
2

Ensor

r
1

Monet

r
1

S01

r
2

Entry 1

system

Entry 2

system

Network databases
Graphical Presentation

Advantages Disadvantages

Multi-parent support
Much more complex than the hierarchical date

model.

Deals with even larger amounts of

information than the hierarchical model.
Users are still required to know the physical

representation of the database

Promotes data integrity.

Information can be related in various and

complicated ways.

Lack structural independence.

5 types of

databases

Network databases
Pros and cons

Relational databases

5 types of
databases

A relational database is a collection of data items organized as a set of formally-
described tables from which data can be accessed or reassembled in many different
ways without having to reorganize the database tables. Such a database is structured
to recognize relations between stored items of information.

5 types of
databases

❖ Row Tuple or record Data set representing a single item

❖ Column Attribute or field A labeled element of a tuple, e.g. "Address" or
"Date of birth"

❖ Table Relation A set of tuples sharing the same attributes; a
set of columns and rows

Relational databases
Building blocks

5 types of
databases

❖ Candidate Key:

❖ Foreign Key

1. Uniqueness: for each row, the combination of values for
each column of the candidate key is unique

2. Irreducibility: it is not possible to leave out any of the
columns of the candidate key without jeopardizing the
uniqueness aspect

The foreign key can be used to cross-reference tables.

Relational databases
Keys

5 types of
databases

Tabel Schilderij kandidaatsleutel = {S_ID} vreemde sleutels = {Artiest} en {Eigenaar}

S_ID:

char(3)

Naam:

varchar

Artiest:

char(3)

Periode:

integer

Waarde:

real

Eigenaar:

varchar

S01 Vissershuis A04 1882 Boijmans16.000.000

S02 De balletles A02 1872 Louvre8.500.000

S03 Mona Lisa A01 1499 Louvre75.000.000

S04 Namiddag te Oostende A03 1881 KMSK200.000

Tabel Artiest kandidaatsleutel = {A_ID}

Naam:

varchar

Voornaam:

varchar

Geboren:

integer

Da Vinci Leonardo 1452

Degas Edgar 1834

Ensor James 1860

Monet Claude 1840

Gestorven:

integer

1519

1917

1949

1926

A_ID:

char(3)

A01

A02

A03

A04

Tabel Eigenaar kandidaatsleutel = {Naam}

Naam:

varchar

Plaats:

varchar

Land:

varchar

Boijmans Rotterdam Nederland

Louvre Parijs Frankrijk

KMSK Antwerpen België

Relational databases
Graphical presentation & keys

SQL is a programming language used for both manipulating and defining data in relational
databases such as Microsoft Access, MySQL and Oracle.

SQL SQL interacts with
data in tables by:

Inserting data

Deleting data

Updating dataCreating schemas

Querying data Controlling access

SQL instructions can be directly used or built into other
programming languages.

5 types of
databases

Relational databases
SQL – Structured Query Language

Edgar Codd
1970

(1NF)

What is Normalisation?

Normalisation ensures
that a database is

structured in the best
possible way

Aims to achieve control
over data redundancy by

removing or limiting
duplication of data

Helps to ensure
consistency of data

A technique for
producing a set of

relations with desirable
properties, given the data

requirements of an
enterprise.

How does it work?

The process of normalization is a formal method that identifies relations based on their primary
or candidate keys and the functional dependencies among their attributes.

Step -1 Step 0 1NF 2NF 3NF BCNF 4NF

All data is single value

All process data is removed

All data is atomic & only one value in every column for every row

No partial dependence between key and non-key attributes

No transitive dependence between key and non-key attributes

Every determinant = a candidate key

No multivalued dependency

Relational databases
Normalisation

Referential integrity is a relational database concept, which states that table
relationships must always be consistent. In other words, any foreign key field
must agree with the primary key that is referenced by the foreign key. Thus, any
primary key field changes must be applied to all foreign keys, or not at all. The
same restriction also applies to foreign keys in that any updates (but not
necessarily deletions) must be propagated to the primary parent key.

Relational databases
Referential integrity

Referential integrity (RI) is a relational database concept, which states that table relationships must
always be consistent. In other words, any foreign key field must agree with the primary key that is
referenced by the foreign key. Thus, any primary key field changes must be applied to all foreign keys,
or not at all. The same restriction also applies to foreign keys in that any updates (but not necessarily
deletions) must be propagated to the primary parent key.

ArtistID Name

1 David

2 Michelle

3 Jens

AlbumID AlbumName ArtistID

1 All ‘bout the
information

1

2 Mama mia 4

3 The average of
the regression
square

2

Referential integrity not
ok. There is no artist with

ID 4

Relational databases
Referential integrity

A transaction, in the traditional sense of RDBMS, means
that you can start modifying the DB with insert, update or
delete commands over different tables and then decide if
you want to keep the changes or not by using ‘commit’ or
‘rollback’. (“all or nothing”)

Relational databases
Transactions

The real point is atomicity: Many rows spanning many tables are
updated as a single operation. This operation either succeeds or
fails in its entirety, and concurrent operations are isolated from
each other so they cannot see a partial update.

Relational databases
ACID Properties

ACID Properties

A

C

I

D

Atomicity

Consistency

Isolation

Durability

Atomicity requires that each transaction be "all or nothing": if one part of
the transaction fails, then the entire transaction fails, and the database state
is left unchanged.

The consistency property ensures that any transaction will bring the
database from one valid state to another.

The isolation property ensures that the concurrent execution of
transactions results in a system state that would be obtained if transactions
were executed sequentially, i.e., one after the other.

The durability property ensures that once a transaction has been
committed, it will remain so, even in the event of power loss, crashes, or
errors.

Basically, it’s all about trying to be 100% sure that any data
we store in our database has a perfect guarantee of
integrity and that all data is consistent

Relational databases

Pros and cons

5 types of

databases

A relational database is a collection of data items organized as a set of

formally-described tables from which data can be accessed or reassembled in

many different ways without having to reorganize the database tables. Such a

database is structured to recognize relations between stored items of

information.

Advantages Disadvantages

Ease of use Performance

Data independence

Use of SQL language

Is the relational
way the best way?

courseNo courseName teacherNo locationNo

1 SQL 1 1

2 Data Mining 1 1

3 BPMN 2 1

4 BPM 2 1

locationNo locationStreet locationCity

1 Prins boudewijnlaan 24c Kontich

TeacherNo TeacherName TeacherEmail TeacherGSM

1 Matthias matthias@tml.be 0011223344

2 Sören soren@tml.be 0099887766

Course

Location

Teacher

Denormalisation

courseNo courseName TeacherName TeacherEmail TeacherGSM locationStreet locationCity

1 SQL Matthias matthias@tml.be 0011223344 Prins boudewijnlaan
24c

Kontich

2 Data Mining Matthias matthias@tml.be 0011223344 Prins boudewijnlaan
24c

Kontich

3 BPMN Sören soren@tml.be 0099887766 Prins boudewijnlaan
24c

Kontich

4 BPM Sören soren@tml.be 0099887766 Prins boudewijnlaan
24c

Kontich

Relational – Imagine we have the following information

Student

First name Last name Date of birth highestDiplomaID

Course

Name Description AverageRating

Teacher

ID First name Last name Job title

Student-Course

StudentID CourseID EvaluationScore

Jos Blutsebaut 19/03/1980 Master1 NoSQL A game, theory & practice 7

1 Michelle Vervoort Junior BA 1 1 9

Statistics A brief overview of … 8

2 David van der Laan Junior BA 1 2 10

ID

1

2

TeacherID

2

1

JavaScript
Object Notation

JSON
Easy for normal

people

JSON is easy to understand and quite well-
readable, even for people without much

experience in these matters.

Easy for
programmers

JSON uses JavaScript syntax, but the JSON
format is text only. Text can be read and

used as a data format by any programming
language.

Aggregate-oriented | This is easier when we enter a context with sharding, replication, etc

// in Student
{
“ID” : 1,
“first name” : “Jos”,
“last name” : “Blutsebaut”,
“date of birth” : “19/03/1980”,
“highestDiploma” : “Master”,
“courses”: [

{
“ID” : 1,
“Name” : “NoSQL”,
“Description” : “A game, theory & practice”,
“averageRating” : 7,
“teacher” :

{
“first name” : “David”,
“last name” : “van der Laan”,
“job title” : “Junior BA”
},

“CourseEvaluationScore” : 9
},

…..

…..
{
“ID” : 2,
“Name” : “Statistics”,
“Description” : “A brief overview of …”,
“averageRating” : 8,
“teacher” :

{
“first name” : “Michelle”,
“last name” : “Vervoort”,
“job title” : “Junior BA”,
},

“CourseEvaluationScore” : 10
}

]
}

eXtensible
Markup Language

XML
Easy for normal

people

XML is easy to understand and quite well-
readable, even for people without much

experience in these matters.

Easy for
programmers

XML format is text only. Text can be read
and used as a data format by any

programming language.
It’s possible to use XSL to validate the

structure of an XML document.

Aggregate-oriented | This is easier when we enter a context with sharding, replication, etc

// Student.xml
<?xml version="1.0" encoding="UTF-8"?>
<student>
<ID>1</ID>
<courses>
<course>
<CourseEvaluationScore>9</CourseEvaluationScore>
<Description>A game, theory & practice</Description>
<ID>1</ID>
<Name>NoSQL</Name>
<averageRating>7</averageRating>
<teacher>
<first_name>David</first_name>
<job_title>Junior BA</job_title>
<last_name>van der Laan</last_name>

</teacher>
</course>

…..

<course>
<CourseEvaluationScore>10</CourseEvaluationScore>
<Description>A brief overview of …</Description>
<ID>2</ID>
<Name>Statistics</Name>
<averageRating>8</averageRating>
<teacher>

<first_name>Michelle</first_name>
<job_title>Junior BA</job_title>
<last_name>Vervoort</last_name>

</teacher>
</course>

</courses>
<date_of_birth>19/03/1980</date_of_birth>
<first_name>Jos</first_name>
<highestDiploma>Master</highestDiploma>
<last_name>Blutsebaut</last_name>

</student>

To SQL or to not only SQL, that is the question.

To SQL or to not only SQL, that is the question.

SQL

SQL

tructured

uery

anguage

SQL

anguage s

SQL Language s

DDL
Data Definition

Language

DCL

Data Control Language

DML
Data Manipulation

Language

Create

Drop

Alter

Grant

Revoke

Deny

Select

Insert

Update

A
database
or a table

Delete

Permissions
Data
in the

database

SQL - DDL
Data Definition Language

Code Result

CREATE TABLE Employee
(
EmployeeNr int,
Name varchar(255),
Email varchar(255),
);

EmployeeNr Name Email

Employee

SQL - DDL
Data Definition Language

Code Result

ALTER TABLE Employee
DROP COLUMN Name EmployeeNr Name Email

Employee

SQL - DDL
Data Definition Language

Code Result

ALTER TABLE Employee
DROP COLUMN Name EmployeeNr Email

Employee

SQL - DDL
Data Definition Language

Code Result

DROP TABLE Employee
EmployeeNr Email

Employee

SQL - DDL
Data Definition Language

Code Result

CREATE TABLE Employee
(
EmployeeNr int,
Name varchar(255),
Email varchar(255),
);

EmployeeNr Name Email

Employee

SQL - DML
Data Manipulation Language

Code Result

INSERT INTO Employee
VALUES
(
‘9’,’Matthias’,’m@tml.be’
);

EmployeeNr Name Email

Employee

SQL - DML
Data Manipulation Language

Code Result

INSERT INTO Employee
VALUES
(
‘9’,’Matthias’,’m@tml.be’
);

EmployeeNr Name Email

9 Matthias m@tml.be

Employee

SQL - DML
Data Manipulation Language

Code Result

INSERT INTO Employee
(Name, Email)
VALUES
(‘David’,’d@tml.be’),
(‘Johan’,’j@tml.be’)

EmployeeNr Name Email

9 Matthias m@tml.be

Employee

SQL - DML
Data Manipulation Language

Code Result

INSERT INTO Employee
(Name, Email)
VALUES
(‘David’,’d@tml.be’),
(‘Johan’,’j@tml.be’)

EmployeeNr Name Email

9 Matthias m@tml.be

null David d@tml.be

null Johan j@tml.be

Employee

mailto:m@tml.be
mailto:d@tml.be
mailto:j@tml.be

SQL - DML
Data Manipulation Language

Code Result

UPDATE Employee
SET Email=‘jo@tml.be’
WHERE Name=‘Johan’

EmployeeNr Name Email

9 Matthias m@tml.be

null David d@tml.be

null Johan j@tml.be

Employee

mailto:m@tml.be
mailto:d@tml.be
mailto:j@tml.be

SQL - DML
Data Manipulation Language

Code Result

UPDATE Employee
SET Email=‘jo@tml.be’
WHERE Name=‘Johan’

EmployeeNr Name Email

9 Matthias m@tml.be

null David d@tml.be

null Johan jo@tml.be

Employee

mailto:m@tml.be
mailto:d@tml.be
mailto:j@tml.be

SQL - DML
Data Manipulation Language

Code Result

DELETE FROM Employee
WHERE Name=‘David’ EmployeeNr Name Email

9 Matthias m@tml.be

null David d@tml.be

null Johan jo@tml.be

Employee

mailto:m@tml.be
mailto:d@tml.be
mailto:j@tml.be

SQL - DML
Data Manipulation Language

Code Result

DELETE FROM Employee
WHERE Name=‘David’ EmployeeNr Name Email

9 Matthias m@tml.be

null Johan jo@tml.be

Employee

mailto:m@tml.be
mailto:j@tml.be

SQL - DCL
Data Control Language

Code Result

USE EmployeeDB
GRANT UPDATE
ON Employee
TO DavidVanDerLaan

David can now update
records in the Employee
table in the Employee
Database

Code Result

USE EmployeeDB
REVOKE UPDATE
ON Employee
TO DavidVanDerLaan

David can no longer update
records in the Employee
table in the Employee
Database

SQL - DCL
Data Control Language

Code Result

USE EmployeeDB
DENY UPDATE
ON Employee
TO DavidVanDerLaan

David can never update
records in the Employee
table in the Employee
Database, even if his job role
or some other logic would
dictate that anyone in his
position has the right to do
so

SQL - DCL
Data Control Language

SQLoN

SQL
o
Not

nly

SQL
o
Not

nly

NoSQL databases provide a
mechanism for storage and retrieval of
data which is modelled in means other
than the tabular relations in relational
databases

The term “Not only SQL” emphasizes
that systems grouped under the broad
class of NoSQL systems may in fact
support SQL-like query languages

A non-relational database is any database that does not follow the relational model
provided by traditional relational database management systems. Such databases are
designed to handle unstructured data that doesn't fit neatly into rows and columns.

NoSQL

NoSQL

NoSQL

NoSQL 4 types we’ll discuss

Key-Value store

Document store

Column Family store

Graph store

Some examples

Redis, Oracle NoSQL Database,
OrientDB, HyperDex, Riak, Aerospike,
ArangoDB

MongoDB, Apache CouchDB,
Couchbase, IBM Domino, Marklogic,
Qizx, RethinkDB, ArangoDB

Apache Cassandra, SAP Hana,
Accumulo, Druid, Hbase, Vertica

Neo4j, ArangoDB, OrientDB,
InfiniteGraph, Alchemy Database,
CortexDB, Marklogic

As you can see, there are also
multi-model stores

Key-Value store

Document store

Column Family store

Graph store

Key-Value stores
A key-value store is a simple hash table, primarily used when all
access to the database is via primary key.

Key Value

abedocd David, 25, d@tml.com

zkjnjl544 …

apozpdl2 …

323fqkd …

qdslkl45 Johan, De Wolf, j@tml.com

dsqf56f …

df512df3 …

Content of the values us
just a big blob of bits to

the database

Key-Value stores | Features

Consistency

Transactions

Query Features

Structure of Data

Scaling

Only for operations on a single key, since these operations are either a get,
put or delete. In distributed key-value stores, there is eventual consistency.

Many key-value stores scale by using sharding. With sharding, the value of
the key determines on which node the key is stored. (e.g. first character of
key determines storage node)

Generally speaking, there are no guarantees on the writes. Many data
stores do implement transactions in different ways. Riak (a key-value store)
uses ‘quorums’ (e.g. 3 out of 5 must confirm write)

All key-value stores can query by key – and that’s about it.

Key-value stores don’t care what is stored in the value part of the key-value
pair. Can be a blob, text, XML, JSON, whatever.

When (not) to use
Key-Value stores

Use in these cases Don’t use in these cases

Storing session information
Generally, every web session is unique and
is assigned a unique sessionid. Everything
about the session can be stored (retrieved)
by a single PUT(GET) request

User profiles, preferences
Almost every user has a unique userid
(username). All info can be put into a single
object. A single GET operation can then get
all preferences of a user.

Shopping cart data
Always tied to a single userid

Relationships among data
Between different sets of data or correlate between
different sets of keys

Multioperation transactions
When saving multiple keys and there is a failure to
save any of them, and you want to roll back the rest of
the operations

Query by data
Search based on something in the value part.

Operations by sets
Operations are limited to one key at a time, there is no
way to operate upon multiple keys at the same time

Key-Value stores

Document stores
Documents are the main concept in document stores and can be
XML, JSON, BSON and so on.

Key Value

abedocd David, 25, d@tml.com

zkjnjl544 …

apozpdl2 …

323fqkd …

qdslkl45 Johan, De Wolf, j@tml.com

dsqf56f …

df512df3 …

Contents of the values
are known to the

database.

In addition to the key
lookup in a key-value

store, a document store
offers an API or query

language that retrieves
documents based on

their contents.

Document stores | Features

Consistency

Transactions

Query Features

Availability

Scaling

In MongoDB, consistency is configured using the replica sets and choosing to wait for
the writes to be replicated to all or a given number of slaves and setting if reads can
occur on slaves or only on master

Horizontal scaling, i.e. by adding more nodes, for faster reads.
Sharding for faster writes.

Transactions at the single-document level are known as atomic transactions.
Transactions involving more than one operation are not possible in MongoDB, but are
possible in RavenDB for example

Depends on choice of DB. One of the good features of document databases (vs. key
value dbs) is that we can query the data inside the document without having to retrieve
the whole document by key and fully reading it

Document databases try to improve on availability by
replicating data using the master-slave setup

When (not) to use
Document stores

Use in these cases Don’t use in these cases

Event logging
Different applications have different event logging needs.
Document db can store all different types of events/act as
central even store

CMS, blogging platform
No predefined schemas and usually
understand JSON documents

Web- or real-time analytics
Parts of documents can be updated, so very easy to store
page views/unique visitors and add new metrics without
schema changes

E-commerce applications
Often need flexible schema for products and orders,
as well as the ability to evolve data model cheaply

Complex transactions spanning multiple
operations
Atomic, cross-document operations not supported by
most document stores. RavenDB and some others
however do support this.

Queries against varying aggregate
structure
Flexible schema means that the db does not enforce
restrictions on the schema. Queries will need to change
with changing design of the aggregates.

Document stores

Column-Family stores
Allow you to store data with keys mapped to values, where the values can be grouped
into multiple column families, each column family being a map of data

Key Column Family

xxxxx
Personal Details Ordered Products

First
name

Last
name

Date of birth ProductID.1 ProductID….

12d59e3d1c85

Personal Details Ordered Products

First
name

Last
name

Date of birth Product.325
Product.1

2254

David VDL 19/03/92 121 31

…

…

One entry point Can have thousands of columns

Columns do not
have to be the

same across
rows

Column families
are groups of

related data that
are often
accessed
together

Column-Family stores | Features

Consistency

Transactions

Query Features

Availability

Scaling

Consistency levels can be configured for reads and writes in most column-
family stores

Scaling an existing Cassandra cluster is a matter of adding more nodes.

In Cassandra, a write is atomic at the row level, which means inserting or
updating columns for a given row key will be treated as a single write and
will either succeed or fail

Cassandra doesn’t have a rich query language. Basic queries GET, SET and
DEL. Also CQL (Cassandra Query Language)

Cassandra is by design highly available, since there is no master in the
cluster and every node is a peer. Availability can be increased by reducing
the consistency level of the requests

When (not) to use
Column-Family stores

Use in these cases Don’t use in these cases

Event logging
Can store any data structure & can scale
writes

CMS, blogging platform
Can store blog entries, with tags, categories,
links in the same row

Counters
CounterColumnType & Incrementing
counters using CQL

Expiring usage
ExpiringColumns, which are deleted
automatically after a given time. (Time To
Live, TTL, expressed in seconds)

ACID transactions required for
reads and writes

Prototyping
During the early stages, not sure how query
patterns may change, high effort to change.

Many query changes
Cost for query change is high

Column-Family stores

Graph stores
Allow you to store entities and relationships between these entities. Entities are
known as nodes, which have properties. Relationships are know as edges, which also
have properties. Edges have directional significance

Drives

Drives

Works
with

Loves

David

BMW

Johan

Pop
music

Graph stores

Graph stores | Features

Consistency

Transactions

Query Features

Availability

Scaling

Most graph dbs do not support distributing nodes on different servers
(exceptions exist). Within a single server, data is always consistent,
especially in Neo4J, which is fully ACID-compliant.

Sharding is difficult, as graph stores are relationship-oriented instead of
aggregate-oriented. Options to scale: Add RAM | Add read-only slaves |
Shard using domain knowledge (e.g. per continent)

Neo4J is ACID-compliant. Before changing any nodes or adding any
relationships to existing nodes, we have to start a transaction. Read
operations can be done without initiating a transaction.

Neo4J has Cypher Query Language. Most graph dbs are supported by
query languages such as Gremlin, which is a domain-specific language for
traversing graphs.

Neo4J achieves high availability by providing for replicated slaves that can
also handle writes. (leading to eventual consistency)

When (not) to use
Graph stores

Use in these cases Don’t use in these cases

Connected data
Social networks

Routing, dispatch & location-
based services
Every delivery location or address is a node,
relationships have property of distance >
efficient delivery

Recommendation engines
Your friends also bought this product

Need to update many entities at
the same time

Very large datasets

Graph stores

NoSQL

NoSQL 4 types we’ve discussed

Key-Value store

Document store

Column Family store

Graph store

Some examples

Redis, Oracle NoSQL Database,
OrientDB, HyperDex, Riak, Aerospike,
ArangoDB

MongoDB, Apache CouchDB,
Couchbase, IBM Domino, Marklogic,
Qizx, RethinkDB, ArangoDB

Apache Cassandra, SAP Hana,
Accumulo, Druid, Hbase, Vertica

Neo4j, ArangoDB, OrientDB,
InfiniteGraph, Alchemy Database,
CortexDB, Marklogic

As you can see, there are also
multi-model stores

Object Oriented Databases

5 types of
databases

An object oriented database is a database management system in which information
is represented in the form of objects as used in object-oriented programming.

5 types of
databases

Management of complex objects

By specifying data in the same way in both the programming language as in
the databasemodel, it is possible to seamlessly exchange this data between

the applicationsofware and the database itself.

Object Oriented Databases
Origins

5 types of
databases

Box

-Volume: int

-Material: string

+FillBox()
+EmptyBox()

A class contains attributes A class contains operations

Box

-Volume
-Material

+FillBox()
+EmptyBox()

Structure Behaviour

Object Oriented Databases
Objects

5 types of
databases

❖ Great diversity in object oriented datamodels & programming languages

➢ No single definition and interpretation for the concept of an Object

➢ Lack of ambiguity in the object oriented programming paradigm

➢ Great variety in OODB

No standardized or commercialized version of THE Object Oriented
Database Model…

Object Oriented Databases
Downfall

Comparison

A very simple timeline
by Martin Fowler

1980 1990 2000 2010

The rise of relational
databases.

(and SQL)

The rise of object databases?
Didn’t happen

Relational dominance

It’s all
about NoSQL?

Probably not.

It’s probably going to
be about Polyglot
Persistence in the

future

Performance

Scalability

Flexibility

Complexity

Comparison of different data stores

Can I handle a million operations per second without going
down?

How easy is it for me to move from handling 100 operations
per second to 100 million operations per second?

How much effort is involved with changing what data I want
to store or how I want to store it?

How difficult is for the new guy to understand the way I
work?

Performance

Scalability

Flexibility

Complexity

Comparison of different data stores

Variable

High

Low

Moderate

Document
store

Graph
store

Column Family storeKey-Value
store

Relational database

Performance

Comparison of different data stores

Variable

High

Low

Moderate

Document
store

Graph
store

Column Family storeKey-Value
store

Relational database

Scalability

Flexibility

Complexity

Scalability

Comparison of different data stores

Variable

High

Low

Moderate

Document
store

Graph
store

Column Family storeKey-Value
store

Relational database

Performance

Flexibility

Complexity

Flexibility

Comparison of different data stores

Variable

High

Low

Moderate

Document
store

Graph
store

Column Family storeKey-Value
store

Relational database

Performance

Scalability

Complexity

Complexity

Comparison of different data stores

None

High

Low

Moderate

Document
store

Graph
store

Column Family storeKey-Value
store

Relational database

Performance

Scalability

Flexibility

RDBMS vs.
NoSQL

NoSQL
non-relational or

distributed databases

RDBMS
Relational database

management systems (SQL)

RDBMS
Relational database

management systems (SQL)

NoSQL
non-relational or

distributed databases

RDBMS
Relational database

management systems
(SQL)

NoSQL
non-relational or

distributed databases

Blog Post

Blog Tags

Blog Comments

1-*

0-1

0-*

0-*

0-*

0-*

Blog Post

Comments

Categories

All other related data

Tags

RDBMS
Relational database

management systems (SQL)

Table-based
Predefined

schema

For structured data

Vertical
scalability

SQL Databases are scaled by increasing the
horse-power of the hardware. (Better CPU,

RAM, SSD, etc on a single server)

Excellent support

for all SQL databases from their
vendors

ACID
Properties

NormalisationEnforced data integrity

ACID Properties

A

C

I

D

Atomicity

Consistency

Isolation

Durability

Atomicity requires that each transaction be "all or nothing": if one part of
the transaction fails, then the entire transaction fails, and the database state
is left unchanged.

The consistency property ensures that any transaction will bring the
database from one valid state to another.

The isolation property ensures that the concurrent execution of
transactions results in a system state that would be obtained if transactions
were executed sequentially, i.e., one after the other.

The durability property ensures that once a transaction has been
committed, it will remain so, even in the event of power loss, crashes, or
errors.

Basically, it’s all about trying to be 100% sure that any data
we store in our database has a perfect guarantee of
integrity and that all data is consistent

RDBMS
Relational database

management systems (SQL)

Table-based
Predefined

schema

For structured data

Vertical
scalability

SQL Databases are scaled by increasing the
horse-power of the hardware. (Better CPU,

RAM, SSD, etc on a single server)

Excellent support

for all SQL databases from their
vendors

ACID
Properties

NormalisationEnforced data integrity

NoSQL
non-relational or

distributed databases
Document

store

Graph store

Column Family store

Key-Value
store

Dynamic
schema

For unstructured data

Horizontal
scalability

NoSQL Databases are scaled by
increasing the number of

database servers in the pool of
resources to reduce the load (just

add a few servers)

Large datasets Community support

Limited outside experts are
available to support large scale

NoSQL deployments

CAP
Theorem

Denormalisation

Eventual data integrity

CAP
Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees:
Consistency, Availability, Partition Tolerance

Partition
tolerance

Consistency Availability
Every read receives the most

recent write or an error

Every request receives a (non-
error) response, without
guarantee that it contains the
most recent write

The system continues to operate despite an arbitrary number of
messages being dropped or delayed by the network between nodes

Pick two

CAP
Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees:
Consistency, Availability, Partition Tolerance

Consistency Availability
Every read receives the most

recent write or an error

Every request receives a (non-
error) response, without
guarantee that it contains the
most recent write

RDBMS

CAP
Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees:
Consistency, Availability, Partition Tolerance

Partition
tolerance

Consistency
Every read receives the most

recent write or an error

The system continues to operate despite an arbitrary number of
messages being dropped or delayed by the network between nodes

MongoDB,
Redis, …

CAP
Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees:
Consistency, Availability, Partition Tolerance

Partition
tolerance

Availability

Every request receives a (non-
error) response, without
guarantee that it contains the
most recent write

The system continues to operate despite an arbitrary number of
messages being dropped or delayed by the network between nodes

Cassandra,
CouchDB,..

NoSQL
non-relational or

distributed databases
Document

store

Graph store

Column Family store

Key-Value
store

Dynamic
schema

For unstructured data

Horizontal
scalability

NoSQL Databases are scaled by
increasing the number of

database servers in the pool of
resources to reduce the load (just

add a few servers)

Large datasets Community support

Limited outside experts are
available to support large scale

NoSQL deployments

CAP
Theorem

Denormalisation

Eventual data integrity

To SQL or to not only SQL, that is the question.

Or not to SQL at all maybe?

Case

BigBazaar wil volgende gegevens bewaren over zijn producten, winkels en verkopen:

Van elk item (product) bewaren we een uniek nummer, een omschrijving, een aanduiding of het al dan
niet bederfbaar is, een aanduiding of het al dan niet in promotie is, de klasse van het item (d.i. een code
van 4 cijfers) en de familieomschrijving van het item.
B.v.: Item 10935 is een pot choco van 300g die bederfbaar is en niet in promotie staat. Het heeft
klassecode 1093 en de familieomschrijving is “kruidenierswaren”.

Van elke winkel bewaren we een uniek nummer, de naam, het winkeltype, de stad en de staat.

Uiteraard zijn er ook klanten. Hiervan bewaren we een uniek nummer, de voornaam en de achternaam.

We willen ook gegevens bewaren over de aankopen van de klanten: welke klant kocht op welke dag
hoeveel stuks van welk item in welke winkel.

We bestuderen het ontwerp voor een relationele databank voor BigBazaar.

Case: design of a relational database

BigBazaar wil volgende gegevens bewaren over zijn producten, winkels en verkopen:

Van elk item (product) bewaren we een uniek nummer, een omschrijving, een aanduiding of het al dan
niet bederfbaar is, een aanduiding of het al dan niet in promotie is, de klasse van het item (d.i. een code
van 4 cijfers) en de familieomschrijving van het item.
B.v.: Item 10935 is een pot choco van 300g die bederfbaar is en niet in promotie staat. Het heeft
klassecode 1093 en de familieomschrijving is “kruidenierswaren”.

Van elke winkel bewaren we een uniek nummer, de naam, het winkeltype, de stad en de staat.

Uiteraard zijn er ook klanten. Hiervan bewaren we een uniek nummer, de voornaam en de achternaam.

We willen ook gegevens bewaren over de aankopen van de klanten: welke klant kocht op welke dag
hoeveel stuks van welk item in welke winkel.

We bestuderen het ontwerp voor een relationele databank voor BigBazaar.

Case: design of a relational database

BigBazaar wil volgende gegevens bewaren over zijn producten, winkels en verkopen:

Van elk item (product) bewaren we een uniek nummer, een omschrijving, een aanduiding of het al dan
niet bederfbaar is, een aanduiding of het al dan niet in promotie is, de klasse van het item (d.i. een code
van 4 cijfers) en de familieomschrijving van het item.
B.v.: Item 10935 is een pot choco van 300g die bederfbaar is en niet in promotie staat. Het heeft
klassecode 1093 en de familieomschrijving is “kruidenierswaren”.

Van elke winkel bewaren we een uniek nummer, de naam, het winkeltype, de stad en de staat.

Uiteraard zijn er ook klanten. Hiervan bewaren we een uniek nummer, de voornaam en de achternaam.

We willen ook gegevens bewaren over de aankopen van de klanten: welke klant kocht op welke dag
hoeveel stuks van welk item in welke winkel.

We bestuderen het ontwerp voor een relationele databank voor BigBazaar.

Case: design of a relational database

