Introduction to data
analysis

Part 9. Python

Clean the data Explore the data

Store the data Analyze in depth

A lot is expected from a data
scientist

Find the data Visualize the results

Understand the question Tell the story

Let’s get started.

NN
.the master labs « academy QNCOI

CLEAN THE
DATA

EXPLORE THE
DATA

PYTHON

ANALYZE IN
DEPTH

VISUALIZE THE
RESULT

What will we do in this course?

1. Introduction to Python

2. Python basics
* Syntax
* Control flow
* Loops
* Dictionaries

3. Python packages

What is Python

Whatis Python

* High level programming language
* Open source

* Dynamic type system

* Readability

* Interpreted language

* Multi paradigm

* General: very powerful and
used in many different ways and areas

.the master labs « academy “¥NCOI

History of Python

74 //
1991
Van Rossum publishes
Python version 0.9.0 to
Python 10, including alt Saicas
functional programming
(lambda's, map, filter, 1994
reduce)
Python 2 introduces list
2000 comprehensions and garbage
collection
Python 3 fixes fundamental
design flaws and is not 2008
backwards compatible
Python 2 is end of life, last
2020 version 2.718 released

“gncon

.the master labs ¢ academy

History of Python

* “Conceived” in late 1980s by Guido Van Rossum
* Successorto the ABC language

Core philosophy:

- Beautiful is better than ugly

- Explicit is better than implicit

- Simple is better than complex

- Complex is better than complicated
- Readability counts

* Current version is Python 3.9.1, introduced in December 2020
Python 2.7 end of life as of January 2020

nthe master labs ¢« academy W

History of Python

Interest over time ® Python @ R @ C++

| 4=

.the master labs ¢ academy

Python vs. other programming languages

.the master labs ¢« academy

In general

Extensible design

* Community involved design

* Emphasizing fun

Culture

.the master labs « academy

Pythonvs. R

Python R

* Open-source * Open-source

* General approach to data science * Main use is statistical analysis
* Catching up on libraries » 12000 packages in CRAN

* Linear, smooth learning curve + Difficult at the beginning

nthe master labs ¢« academy Q’;@!

Pythonvs. C++
Python

o C+t

Interpreted language

Easier to learn . o
* Lcompiied language
* Fastest growing language for embedded computing ? 6Uag

Readability * More difficult to learn

* Creates more compact and
faster runtime code

* Complex syntax

nthe master labs ¢« academy Q’;@!

Why Pythonin data science

* Interpreted language, so no compiling is needed

* Fast prototyping

* Easily explore data and work out concepts

* Extensible to include popular algorithms from other languages

* Libraries such as matplotlib, numpy and pandas make data science
accessible

* Jupyter notebooks for combining text and code in a single, easy to share
document

nthe master labs ¢« academy Q’@l

Installing Python

Installing Python

* Python 2.7 vs Python 3.x

* Long story short, Python 2.x was replaced by Python 3 in 2008. Support for
Python 2.7 has ended as of 1 January 2020. Most, but not all libraries have
been ported to Python 3.x. For data science purposes, all we need is Python
3.

nthe master labs ¢« academy <SNCOI

r/ LEARNING

Anaconda

* Python distribution for large-scale data analytics
* Provides many of the tools needed to analyse large sets of data

* Includes:
- Core Python language
- Over 1000 packages, many for data science
- Package management with conda
- |Python

- Much more

nthe master labs ¢« academy Q’:@l

Miniconda

* Slimmed down version of Anaconda
* Includes the basic requirements

* Allows you to install packages as needed, decreasing download and
installation time

nthe master labs ¢« academy <SNCOI

r/ LEARNING

Anaconda, Miniconda, or Python

* Anaconda and Miniconda both install Python
* Anaconda and Miniconda make it easier to install Jupyter Notebooks

* For your own machine it’s your own choice

We will be installing Miniconda due to the shorter installation time and the
fact that we’ll be using Jupyter Notebooks

nthe master labs ¢« academy <SNCOI

r/ LEARNING

Installing Miniconda

* Go to https://conda.io/en/latest/miniconda.html
* Download the latest version for your OS

* Runt h e insta I Ie r O Miniconda3 4.5.12 (64-bit) Setup

,J ANACONDA customize how Anaconda integrates with Windows

Advanced Options

[] Add Anaconda to my PATH environment variable
Not recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes

Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

[MRegister Anaconda as my default Python 3.7
This will allow other programs, such as Python Tools for Visual Studio

PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system.

.the master labs ¢ aca <oak [wstad][concel W

Python basics

Python syntax

* No curly brackets
e Semicolons (;) optional

* Whitespace indentation used to delimit blocks

.the master labs « academy

Example Python code

def SayHello():
name = input("What is your name? ")

if (name == "Rik"):
print("0Oh, hello there " + name + ".")
elif (name == "Sven"):
print(name + " please... You're not supposed to be in this Python course.")
else:
print(name + "... I've never heard of you before.")
SayHello()

.the master labs ¢ academy Q’{/@J

Comments

* Use # sign to write commentsin your code

* Comments are ignored when running code

This 1s a comment
print("This 1is no comment”™)

.the master labs ¢ academy Q’{/@J

Variables

* Declare a variable by giving it a value

e Usethe =sign

my variable = 'Some text’
print(my variable)

'the master labs ¢ academy m

Errors

* Two types of common error messages

* SyntaxError

* |ssue with Python
syntax

* NameError

* Undefined variables
are used

NameError Traceback (most recent call last)
<ipython-input-2-cbb98db30279> in <module>
----> 1 print(Abracadabra)

NameError: name 'Abracadabra’ is not defined

.the master labs ¢ academy m

Strings

* Strings contain text

* Declare strings by using either single (‘Text’) or double (“Text”) quotation
marks

my variable = 'Some text’

print(my variable)
'the master labs ¢ academy g@l

Multi-line strings

* Use triple quotation marks to indicate a string that spans over multiple lines

* Considered as a commentif not assigned to a variable

leaves_of _grass =

Poets to come! orators, singers, musicians to come!

Not to-day is to justify me and answer what I am for,

But you, a new brood, native, athletic, continental, greater than
before known,

Arouse! for you must justify me.

.the master labs ¢ academy W

Numbers

* Multiple types of numbers: integers and floats
* Integers are whole numbers

* Floats are decimal numbers

an_int = 12
a float = 1.25

print(an_int - 10)
print(a_float)

'the master labs ¢ academy Q’;ﬁa{?}

Calculating

* Use the mathematical signs to perform calculations on numbers

° +
. # Prints "500"

. print(573 - 74 + 1)
o/ # Prints "50"

print(25 * 2)

Prints "2.0"
print(1@ / 5)

'the master labs ¢ academy w

Exponents

* Use ** to take an exponent of a number

¢ 3*¥] =9
exponent = 3 ** 2
print(exponent)
.the master labs ¢ academy W

Modulo

* Use modulo (%) to calculate the remainder of a division

Prints 4 because 29 / 5 is 5 with a remainder of 4
print(29 ¥ 5)

Prints 2 because 32 / 3 is 10 with a remainder of 2
print(32 % 3)

Modulo by 2 returns © for even numbers and 1 for odd numbers
Prints ©
print(44 % 2)

.the master labs ¢ academy WQ}

Concatenation

* Add multiple strings together into a single string

* Usethe + sign

greeting text
question_text

full text = greeting text + question_ text

Prints "Hey there!How are you doing?”
print(full text)

.the master labs ¢ academy

"Hey there!”
"How are you doing?”

Encor

Plus equals

* Incrementa number by another specified number

First we have a variable with a number saved
number_of miles hiked = 12

Then we need to update that variable

Let's say we hike another two miles today
number _of miles hiked += 2

.the master labs ¢ academy W

Booleans

* Two possible values
- True

- False
* Comparison operators

* Logical operators

'the master labs ¢« academy

my bool = True
my other bool = False

Comparison operators

- print(1 == 1)
. print(2 != 4)
. oo print(3 == 5)
o print('7' == 7)

.the master labs ¢ academy W

Logical operators

* and
my first var
©oor my second var

my third var
¥ oK

.the master labs ¢« academy

True and True
False or True
not False

Functions

* Contain several lines of code which can be reused later

 Consider:
- Name of function
- Input(s) of function

- Output(s) of function

* First define a function, and then call it later

def greeting(name, company_name):
print("Hello " + name + " and welcome to " + company_name)

first_name = "Rik"
company = “"The Master Labs”

greeting(first_name, company)

'the master labs ¢ academy w

Returns

* Return the result of your function and assign it to a variable

def divide by four(input number):
return input_number/4

'the master labs ¢ academy m

Scope

* Variables declared within a function are only available in that function

* Variables declared outside are available everywhere

def create special string(special item):
return "Our special is " + special item +

print("I don't like " + special item)

'the master labs ¢ academy m

Control flow

* Make decisions based on certain conditions

* Decide which part of the program should run based on the result of those
decisions

* Boolean expressions
* Comparison operators
* Logical operators

* |f, else statements

nthe master labs ¢« academy <SNCOI

r/ LEARNING

If statements

* If condition is True, do something

.the master labs ¢ academy

Encor

Else statements

* |f no condition is True, do this

def age check(age):

if age >= 13:
return True
else:

return "Sorry, you must be 13 or older to watch this movie.”

.the master labs ¢ academy W

Else-if (elif)

* Wh / st tat t
°ycq1°enc clgﬁdfl Snegge%nu%ntlally If True, do something and then

stop. If not True, move on to the next condition

def thank_you(donation):

if donation >= 1000:

print("Thank you for your donation! You have achieved platinum donation status!™)
elif donation >= 500:

print("Thank you for your donation! You have achieved gold donation status!")
elif donation >= 100:

print("Thank you for your donation! You have achieved silver donation status!"™)
else:

print("Thank you for your donation! You have achieved bronze donation status!™)

.the master labs ¢ academy Q’{/@J

Lists

* Store multiple datain a single variable

Elements can be different data types
* Use square brackets [| to define a list

* Use commas to differentiate elements

my list = ['Gianni', @5, 'Analyst', Trued]

.the master labs « academy <SNCOI

r/ LEARNING

List operations

Get asingle element fromalist my 1ist[2]

* Get arange of elements my 1ist[l:3]
* Get the length of a list le; (my list)
* Zip multiple lists together zfpped 1ist = zfpllfstl, I1ists)
* Add new items to a list my list.append('Value')
.the master labs ¢« academy Wl

Range

* Function that creates a list of consecutive numbers

* Takes three input parameters: x, y and i
- X is the starting number for our list
- y is one more than the final number of our list

- i is the interval between each number of our list

my list = range(10)
[, 1, 2, 3, 4, 5, 6, 7, 8, 9]

.the master labs « academy W

Loops

* Repeat the same block of code x number of times

* Three common types of loops in Python
- For loops: iterate through every item in a list
- While loops: loop until as long as a certain condition is true

- List comprehension: create new lists using a loop in a single line

nthe master labs ¢« academy m

Forloops

* General syntax:

for <temporary variable> in <list variable>:
<do something>

* Example:

dog breeds = ['french bulldog', 'dalmatian', 'shihtzu', 'poodle', 'collie']
for breed in dog breeds:
print (breed)

'the master labs ¢ academy m

4

While loops

* General syntax:

while <condition is true>:
<do something>

* Example:

dog breeds = ['bulldog', 'dalmation', 'shihtzu', 'poodle', 'collie']
index = 0
while index < len(dog breeds):

print (dog breeds[index])

index += 1

nthe master labs ¢« academy Q’@l

List comprehension

* General syntax:

new list = [<item>/<value> for <item> in <list> if <condition>]

* Example:

words = ["@coolguy35", "#nofilter", "Qkewldawgh4"]

usernames = [word for word in words if word[0] == '@'"]
nthe master labs ¢« academy Q’;@l

Dictionaries

* Store multiple datain a single variable

Key/value pairs
* Use angular brackets {} to define a dictionary

* Use commas to differentiate key/value pairs, colon (:) between key and
value

greetings dict = {
“nl~: Hallol",
T~ "Bonjourl ,
'pl': '"Czesc!'’

}
nthe master labs ¢« academy <SNCOI

r/ LEARNING

Dictionary operations

* Get an element from a dictionary
my dictionary[‘'my key']

* Add an element to a dictionary

my dictionary['other _key'] = 'updated value'

* Update an element on a dictionary

my dictionary['my key'] = 'updated value'

.the master labs « academy W

Dictionary values

* Values on a dictionary can be different data types, even dictionaries

interstellar = {
'title': 'Interstellar’,
‘release _year': 2014,
‘'runtime’': 169,
‘imdb_score': 8.6,
‘genres': ['Adventure', 'Drama', 'Sci-Fi'],
‘director': {
‘name’': 'Christopher Nolan',
‘date_of birth': '1970-07-30'

}
'the master labs ¢ academy m

List vs. Dictionary

List Dictionary

e Store datain a single variable « Store datain a single variable

* Use square brackets [] to define * Use angular brackets to define {}

* Elements can be different data * Elements can be different data
types types

e Retrieve elements by index * Retrieve elements by key

nthe master labs ¢« academy Q’@l

Python packages

Jupyter

* A web application which is closely integrated with Python

* Create and share documents

* Includes live code, equations, visualisations and more

.the master labs « academy <SNCOI

r/ LEARNING

Numpy

* Library for scientific computing using Python
* Allows us to:

- Efficiently work with numbers

- Generate random numbers

- Perform many numerical functions (such as calculating sin, cos, mean, median, and
many others)

nthe master labs ¢« academy m

SciPy

* Python library for statistical analysis

* Allows us to:

- Perform a number of statistical tests, including One Sample T Tests, Two Sample T
Tests, ANOVA, Tukey Tests, Binomial Tests, Chi Square

nthe master labs ¢« academy Q’@l

Pandas

Library for data manipulation and analysis
* Gives tools to work with tabular data

* Similar functionality to SQL or Excel, but within Python

Create tables, load data from files, select rows or columns

nthe master labs ¢« academy Q’;@!

Matplotlib

* 2D plotting library for Python

17500 -

15000 -

12500 -

10000 -

7500 A

5000 A

2500 A

10

20 A

10 -

-10 A

-20 -

-30 -

Using hyphen instead of Unicode minus

P o ¢
e
L XY ®
o " 5 S s . ® ¢
(b P I ° .
@)
° °® °, ®
o e®) s ° ®
o ® ©®
® e
e ° o
° ®
. .
®
®
30 20 10 0 10 20

Scikit-learn

» Aggregation package

» “features various classification, regression and clustering algorithms
including support-vector machines, random forests, gradient boosting, k-

means and DBSCAN” (Wikipedia)

* Machine learning in python
. ' <<NCOI
r./ LEARNING

.the master labs ¢ academy

